- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0010000001000000
- More
- Availability
-
02
- Author / Contributor
- Filter by Author / Creator
-
-
Alipour, Alice (2)
-
Qudaisat, Muneer (2)
-
Gallus, William (1)
-
Houssou, Dela (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available October 1, 2026
-
Qudaisat, Muneer; Houssou, Dela; Gallus, William; Alipour, Alice (, Springer Nature Switzerland)Abstract Climate-change-imposed challenges in the form of heightened frequency and intensity of weather events exert additional pressure on securing the imperative continuous and reliable power supply, leading to increased power outages. This research proposes a comprehensive framework for enhancing the resilience of electric power networks (EPNs) through reliability-based risk assessment, promoting predictions and proactive decisions. The presented research discusses weather phenomena, their association with climate change, and their projected impacts. The numerical weather prediction model, WRF 3.4.1, with a 4 km resolution cell grid, gives a more accurate projection of high winds’ frequency and intensity. The simulation period from 2086 to 2099 is based on a reference control period spanning from 2000 to 2013, with adjustments made to background conditions using climate model output consistent with projections for the late century, a pseudo-global warming (PGW) technique. The presented research focuses on the wooden power distribution poles. The reliability assessment approach employs fragility development and analysis against wind scenarios through advanced modeling techniques and statistical analysis used to mimic historical and projected wind scenarios and to allow numerous factors on both the demand and capacity sides and their inherent uncertainties to be considered. The annual probability of failure is obtained by performing a mathematical convolution of the fragility and the hazard curves, showing the reflection of the effects of climate change on the annual probability of failure. Scaling these results to a system-level resilience assessment will facilitate the flexible energy design strategies integration and allow smoother net-zero standards incorporation and adaptation to the changing environmental conditions. This understanding will allow the decision-makers to evaluate the critical locations within a distribution line and plan to address the vulnerabilities by hardening the assets or implementing modern microgrid techniques or distributed energy resource integration.more » « lessFree, publicly-accessible full text available January 1, 2026
An official website of the United States government
